Abstract

Continued success of the most widely used biopesticide, Bacillus thuringiensis, is threatened by development of resistance in pests. Experiments with Plutella xylostella (diamondback moth), the first insect with field populations resistant to B. thuringiensis, revealed factors that promote reversal of resistance. In strains of P. xylostella with 25- to 2800-fold resistance to B. thuringiensis compared with unselected strains, reversal of resistance occurred when exposure to B. thuringiensis was stopped for many generations. Reversal of resistance was associated with restoration of binding of B. thuringiensis toxin CryIA(c) to brush-border membrane vesicles and with increased biotic fitness. Compared with susceptible colonies, revertant colonies had a higher proportion of extremely resistant individuals. Revertant colonies responded rapidly to reselection for resistance. Understanding reversal of resistance will help to design strategies for extending the usefulness of this environmentally benign insecticide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.