Abstract

We investigate nonlocal vortex motion in weakly pinning a-NbGe nanostructures, which is driven by a transport current I and remotely detected as a nonlocal voltage V{nl}. At a high I of a given polarity, V{nl} changes sign dramatically. This is followed by V{nl} becoming even in I, with the opposite sign at low and high temperatures T. These findings can be explained by a Nernst-like effect resulting from local electron overheating (low T), and a magnetization enhancement due to a nonequilibrium quasiparticle distribution that leads to a gap enhancement near the vortex core (high T).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.