Abstract

The prostate is an androgen-regulated exocrine gland producing over 30% of the noncellular components of the semen and promoting optimal conditions for survival and motility of sperm in the vagina. Benign prostate hyperplasia (BPH) is the most common benign neoplasm in men. Its aetiology is not clear, and therefore, current medical treatments are directed towards the symptoms. Though testosterone is known to be the promoter of prostate cell proliferation, no causal relation between serum testosterone levels and BPH has been found. In this study, we propose a novel and tested pathophysiological mechanism for the evolution of BPH and suggest a tested and effective treatment. We found that in all BPH patients, the one-way valves in the vertically oriented internal spermatic veins are destroyed (clinically manifested as varicocele), causing elevated hydrostatic pressure, some 6-fold greater than normal, in the venous drainage of the male reproductive system. The elevated pressure propagates to all interconnected vessels leading to a unique biological phenomenon: venous blood flows retrograde from the higher pressure in the testicular venous drainage system to the low pressure in the prostatic drainage system directly to the prostate (law of communicating vessels). We have found that free testosterone levels in this blood are markedly elevated, with a concentration of some 130-fold above serum level. Consequently, the prostate is exposed to: (i) increased venous pressure that causes hypertrophy; (ii) elevated concentration of free testosterone causing hyperplasia. We have treated 28 BPH patients using a technique that restores normal pressure in the venous drainage in the male reproductive system. The back-pressure and the back-flow of blood from the testicular to the prostate drainage system were eliminated and, consequently, a rapid reduction in prostate volume and a regression of prostate symptoms took place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.