Abstract

Low hole mobility of nitride semiconductors is a significant impediment to realizing their high-efficiency device applications. Scandium nitride (ScN), an emerging rocksalt indirect band gap semiconductor, suffers from low hole mobility. Utilizing the ab initio Boltzmann transport formalism including spin-orbit coupling, here we show the dominating role of ionized impurity scattering in reducing the hole mobility in ScN thin films. We suggest a route to increase the hole mobility by reversing band ordering through strain engineering. Our calculation shows that the biaxial tensile strain in ScN lifts the split-off hole band above the heavy hole and light hole bands, leading to a lower hole-effective mass and increasing mobility. Along with the impurity scattering, the Fröhlich interaction also plays a vital role in the carrier scattering mechanism due to the polar nature of ScN. Increased hole mobility in ScN will lead to higher efficiencies in thermoelectric, plasmonics, and neuromorphic computing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.