Abstract
Alzheimer’s disease (AD), a dreadful neurodegenerative disorder that affects cognitive and behavioral function in geriatric populations, is characterized by the presence of amyloid deposits and neurofibrillary tangles in brain regions. The International D World Alzheimer Report 2018 noted a global prevalence of 50 million AD cases and forecasted a threefold rise to 139 million by 2050. Although there exist numerous genetic association studies pertinent to AD in different ethnicities, critical genetic factors and signaling pathways underlying its pathogenesis remain ambiguous. This study was aimed to analyze the genetic data retrieved from 32 Gene Expression Omnibus datasets belonging to diverse ethnic cohorts in order to identify overlapping differentially expressed genes (DEGs). Stringent selection criteria were framed to shortlist appropriate datasets based on false discovery rate (FDR) p-value and log FC, and relevant details of upregulated and downregulated DEGs were retrieved. Among the 32 datasets, only six satisfied the selection criteria. The GEO2R tool was employed to retrieve significant DEGs. Nine common DEGs, i.e., SLC5A3, BDNF, SST, SERPINA3, RTN3, RGS4, NPTX, ENC1 and CRYM were found in more than 60% of the selected datasets. These DEGs were later subjected to protein–protein interaction analysis with 18 AD-specific literature-derived genes. Among the nine common DEGs, BDNF, SST, SERPINA3, RTN3 and RGS4 exhibited significant interactions with crucial proteins including BACE1, GRIN2B, APP, APOE, COMT, PSEN1, INS, NEP and MAPT. Functional enrichment analysis revealed involvement of these genes in trans-synaptic signaling, chemical transmission, PI3K pathway signaling, receptor–ligand activity and G protein signaling. These processes are interlinked with AD pathways.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have