Abstract

The nanofluidic ionic signal is governed by the interactions between ion species and the surface charge, surface wettability, and pore diameter of nanofluidic membranes. However, the effect of surface wettability on the ionic detection signal across the nanofluidic membrane remains poorly explored, limited nanofluidic applications in biochemical sensing. Here, we investigate the effect of surface wettability of the nanofluidic membrane on the ionic signal for the detection of hydrophobic drug molecules using a heterogeneous nanofluidic system. This ionic signal can be tuned by light or the presence of certain ions due to the tailoring of hydrophobic interactions between the ion species and membrane surface. Compared with traditional nanofluidic membranes whose ionic signal is governed by surface charge, the regulation mechanism reported here mainly dependents on specific hydrophobic interactions, which shows a more sensitive ionic signal to environments. By virtue of the mechanism, the selective detection of the three drug molecules was realized owing to their different hydrophobic interactions with membrane surfaces. These findings have implications for understanding mass transport in nanofluidic devices and biological components and porous media involving surface wettability in nanofluidic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call