Abstract

Organic electrochemical transistors (OECTs) have shown great potential in bioelectronics and neuromorphic computing. However, the low performance of n-type OECTs impedes the construction of complementary-type circuits for low-power-consumption logic circuits and high-performance sensing. Compared with their p-type counterparts, the low electron mobility of n-type OECT materials is the primary challenge, leading to low μC* and slow response speed. Nevertheless, no successful method has been reported to address the issue. Here, we find that the charge carrier mobility of n-type OECTs can be significantly enhanced by redistributing the polarons on the polymer backbone. As a result, 1 order of magnitude higher electron mobility is achieved in a new polymer, P(gPzDPP-CT2), with a simultaneously enhanced μC* value and faster response speed. This work reveals the important role of polaron distribution in enhancing the performance of n-type OECTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call