Abstract
AbstractDonor–acceptor (D‐A) polymers are promising materials for organic electrochemical transistors (OECTs), as they minimize detrimental faradaic side‐reactions during OECT operation, yet their steady‐state OECT performance still lags far behind their all‐donor counterparts. We report three D‐A polymers based on the diketopyrrolopyrrole unit that afford OECT performances similar to those of all‐donor polymers, hence representing a significant improvement to the previously developed D‐A copolymers. In addition to improved OECT performance, DFT simulations of the polymers and their respective hole polarons also reveal a positive correlation between hole polaron delocalization and steady‐state OECT performance, providing new insights into the design of OECT materials. Importantly, we demonstrate how polaron delocalization can be tuned directly at the molecular level by selection of the building blocks comprising the polymers’ conjugated backbone, thus paving the way for the development of even higher performing OECT polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.