Abstract
Corporate disclosures convey crucial information to financial market participants. While machine learning algorithms are commonly used to extract this information, they often overlook the use of idiosyncratic terminology and industry-specific vocabulary within documents. This study uses an unsupervised machine learning algorithm, the Structural Topic Model, to overcome these issues. Our findings illustrate the link between machine-extracted risk factors discussed in corporate disclosures (10-Ks) and the corresponding pricing behavior by investors, focusing on a previously unexplored US REIT sample from 2005 to 2019. Surprisingly, when disclosed, most risk factors counterintuitively lead to a decrease in return volatility. This resolution of uncertainties surrounding known risk factors or the provision of additional facts about these factors contributes valuable insights to the financial market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.