Abstract
In this paper, a novel unsupervised machine learning (ML) algorithm is presented for the expeditious RF fingerprinting of LoRa modulated chirps. Identification based on received signal strength indicator (RSSI) alone is unlikely to yield a robust means for sensor authentication within critical infrastructure deployment. Here, an unsupervised ML algorithm is used to rapidly train an artificial neural network (ANN) matrix creating self-organizing maps (SOMs) for each authentic transmitter and a potential rogue node. A general classifier can be trained on the SOMs for precisely profiling each transmitter as either genuine or rogue. By means of experimental validation, this methodology demonstrated cent-percent success in recognizing each transmitter, either being a real or a rogue node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.