Abstract

In the context of low-pressure casting, an excessive inlet velocity may result in the introduction of an oxide film and air into a liquid metal, leading to the formation of a two-layer film structure within the casting. Such defects can significantly degrade the mechanical properties of the castings. In order to optimize the advantages of low-pressure casting, an empirically designed equation for the inlet velocity was formulated and the concept of critical inlet velocity was further refined. A comprehensive numerical simulation was conducted to meticulously analyze the liquid metal spreading phase within the cavity. Subsequently, low-pressure casting experiments were carried out with actual castings of an A357 alloy, using two different entrance velocities—one critical and the other exceeding the critical entrance velocity. Tensile test specimens were extracted from the castings for the comparative evaluation of mechanical properties. It was observed that the average tensile strength of specimens cast at the critical inlet velocity exhibited a notable 16% enhancement. In contrast, specimens cast at velocities exceeding the critical inlet velocity manifested the presence of double oxide film defects. This evidence suggests that casting at a velocity faster than the critical inlet velocity leads to the formation of double oxide film defects, which in turn reduces the mechanical properties of the castings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call