Abstract

In tool and mold making, components are typically first pre-machined in a soft state with residual stock allowance, as economical production is not possible in a hardened state due to the enormous tool wear. This extends the process chain and therefore also the throughput times. This paper presents an innovative tool concept for a solid carbide end mill in order to be able to carry out roughing and finishing in a hardened state. First, the structure of the innovative solid carbide end mill is described. Afterwards, the results of experimental tests are presented and discussed. These describe the suitability of the tool concept and include further investigations that examine the influence of the helix angle on the process behavior during the machining of the tool steel Toolox 44. To evaluate the process behavior, the development of process forces, chip formation, tool wear and component quality over the tool life are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.