Abstract
Aprotic lithium-oxygen batteries (LOBs) are promising energy storage systems characterized by ultrahigh theoretical energy density. Extensive research has been devoted to this battery technology, yet the detailed operational mechanisms involved, particularly unambiguous identification of various discharge products and their specific distributions, are still unknown or are subjects of controversy. This is partly because of the intrinsic complexity of the battery chemistry but also because of the lack of atomic-level insight into the oxygen electrodes acquired via reliable techniques. In the current study, it is demonstrated that electron beam irradiation could induce crystallization of amorphous discharge products. Cryogenic conditions and a low beam dosage have to be used for reliable transmission electron microscopy (TEM) characterization. High-resolution cryo-TEM and electron energy loss spectroscopy (EELS) analysis of toroidal discharge particles unambiguously identified the discharge products as a dominating amorphous LiO2 phase with only a small amount of nanocrystalline Li2O2 islands dispersed in it. In addition, uniform mixing of carbon-containing byproducts is identified in the discharge particles with cryo-EELS, which leads to a slightly higher charging potential. The discharge products can be reversibly cycled, with no visible residue after full recharge. We believe that the amorphous superoxide dominating discharge particles can lead researchers to reconsider the chemistry of LOBs and pay special attention to exclude beam-induced artifacts in traditional TEM characterizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.