Abstract
We aim to unveil the structure of the continuum and broad-emission line (BEL) emitting regions in the gravitationally lensed quasar SDSS J1339+1310 by examining the distinct signatures of microlensing present in this system. Our study involves a comprehensive analysis of ten years (2009--2019) of photometric monitoring data and seven spectroscopic observations acquired between 2007 and 2017. This work focuses on the pronounced deformations in the BEL profiles between images A and B, alongside the chromatic changes in their adjacent continua and the striking microlensing variability observed in the $r$-band light curves. We employed a statistical model to quantify the distribution and impact of microlensing magnifications and utilized a Bayesian approach to estimate the dimensions of various emission regions within the quasar. To establish a baseline relatively free of microlensing effects, we used the cores of the emission lines as a reference. The analysis of the $r$-band light curves reveals substantial microlensing variability in the rest-frame UV continuum, suggesting that image B is amplified relative to image A by a factor of up to six. This finding is corroborated by pronounced microlensing-induced distortions in all studied BEL profiles (Lyalpha , Si IV, C IV, C III
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have