Abstract
Heteroatom doping is the most common means to enhance the Li+/Na+ ions storage of hard carbon (HC). The explanation of the storage mechanism of heteroatom-doped HC is to increase the active site or widen the layer spacing while ignoring the effect of local bending structure induced by it. Meanwhile, the storage mechanism by the localized bending structure also lacks in-depth study. Herein, a locally curved configuration and an amorphous structure are designed by introducing different heteroatoms, respectively, and the mechanism of the two types of structures on the Li+/Na+ ions storage is explored. The density functional theory (DFT) calculation shows that the adsorption energy of Li+/Na+ ions is optimal at the appropriate curvature of 27.72 m-1. Serving as anode for lithium/sodium ion batteries in ester electrolytes, the optimized HCs demonstrate satisfied specific capacity and high-rate capability, respectively. Furthermore, the charging capacity below 1.0V of HC with suitable curvature microstructure reaches 84.8% and 90.1% of the total charge capacity, confirming that the curvature defects can better control the delithiation/desodiation process, and provide a higher energy density. This study enlightens new insights into the storage mechanisms of Li+/Na+ ions and provides guidance for better design of heteroatom-doped carbon anodes with superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.