Abstract
Toxic cyanobacterial blooms have become a severe global hazard to human and environmental health. Most studies have focused on the relationships between cyanobacterial composition and cyanotoxins production. Yet, little is known about the environmental conditions influencing the hazard of cyanotoxins. Here, we analysed a unique 22 sites dataset comprising monthly observations of water quality, cyanobacterial genera, zooplankton assemblages, and microcystins (MCs) quota and concentrations in a large-shallow lake. Missing values of MCs were imputed using a non-negative latent factor (NLF) analysis, and the results achieved a promising accuracy. Furthermore, we used the Bayesian additive regression tree (BART) to quantify how Microcystis bloom toxicity responds to relevant physicochemical characteristics and zooplankton assemblages. As expected, the BART model achieved better performance in Microcystis biomass and MCs concentration predictions than some comparative models, including random forest and multiple linear regression. The importance analysis via BART illustrated that the shade index was overall the best predictor of MCs concentrations, implying the predominant effects of light limitations on the MCs content of Microcystis. Variables of greatest significance to the toxicity of Microcystis also included pH and dissolved inorganic nitrogen. However, total phosphorus was found to be a strong predictor of the biomass of total Microcystis and toxic M. aeruginosa. Together with the partial dependence plot, results revealed the positive correlations between protozoa and Microcystis biomass. In contrast, copepods biomass may regulate the MC quota and concentrations. Overall, our observations arouse universal demands for machine-learning strategies to represent nonlinear relationships between harmful algal blooms and environmental covariates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.