Abstract

Stimulated by the growing demand for sustainable and/or economical distributed ammonia synthesis, the electrochemical nitrogen reduction reaction has attracted considerable interest. The nitrogen-containing impurities in commercial metal-based nitrogen reduction reaction catalysts such as metal oxides and metallic irons have, however, been overlooked. Herein we report the presence of nitrogen-containing species in NOx− or nitrides at substantial levels revealed from many commercial catalysts. We call attention to the necessity to screen the NOx−/nitrides impurities in commercial catalysts, as the nitrogen impurities are not commonly listed in vendors’ assay documents. A simple two-step procedure (alkaline/acidic treatment followed by HPLC/UV–vis analysis) is recommended as a reliable protocol for screening NOx−/nitrides impurities in catalyst materials. A case analysis is also carried out on the previously reported H2O–NaOH–KOH system with both 15N-isotopic labelling and nitrogen elemental tracking, reassigning the true nitrogen source of the electrochemically produced NH3 from gaseous N2 to nitrogen-containing impurities in catalysts. The electrochemical nitrogen reduction reaction has recently attracted significant interest, but the true source of ammonia formation remains sometimes unclear. This Analysis reports a systematic investigation of the presence of nitrogen-containing species in a number of commercial catalysts, revealing substantial levels of NOx− and nitrides impurities for some of them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.