Abstract

A major challenge in modeling interfacial processes in electrochemical (EC) devices is performing simulations at constant potential. This requires an open-boundary description of the electrons, so that they can enter and leave the computational cell. To enable realistic modeling of EC processes under potential control we have interfaced density functional theory with the hairy probe method in the weak coupling limit (Zauchner et al. Phys. Rev. B 2018, 97, 045116). Our implementation was systematically tested using simple parallel-plate capacitor models with pristine surfaces and a single layer of adsorbed water molecules. Remarkably, our code's efficiency is comparable with a standard DFT calculation. We reveal that local field effects at the electrical double layer induced by the change of applied potential can significantly affect the energies of chemical steps in heterogeneous electrocatalysis. Our results demonstrate the importance of an explicit modeling of the applied potential in a simulation and provide an efficient tool to control this critical parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.