Abstract

We study theoretically the influence of local fields on phonon-induced transparency (PIT) in quantum-dot systems embedded in a semiconductor matrix. As compared with our previous work without local field effects, we present analytical and numerical results from solution of the generalized optical Bloch equations including the local field effects. It is shown that the local field effects broaden the transparency window due to PIT and reduce the group velocity of light. For some specific parameters of the light and quantum dots, fast light can be obtained in such systems. The results also demonstrate that Kerr nonlinearity is enhanced greatly due to the local field effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call