Abstract

The early stages of chronic disease typically progress slowly, so symptoms are usually only noticed until the disease is advanced. Slow progression and heterogeneous manifestations make it challenging to model the transition from normal to disease status. As patient conditions are only observed at discrete timestamps with varying intervals, an incomplete understanding of disease progression and heterogeneity affects clinical practice and drug development. We developed the Gaussian Process for Stage Inference (GPSI) approach to uncover chronic disease progression patterns and assess the dynamic contribution of clinical features. We tested the ability of the GPSI to reliably stratify synthetic and real-world data for osteoarthritis (OA) in the Osteoarthritis Initiative (OAI), bipolar disorder (BP) in the Adolescent Brain Cognitive Development Study (ABCD), and hepatocellular carcinoma (HCC) in the UTHealth and The Cancer Genome Atlas (TCGA). First, GPSI identified two subgroups of OA based on image features, where these subgroups corresponded to different genotypes, indicating the bone-remodeling and overweight-related pathways. Second, GPSI differentiated BP into two distinct developmental patterns and defined the contribution of specific brain region atrophy from early to advanced disease stages, demonstrating the ability of the GPSI to identify diagnostic subgroups. Third, HCC progression patterns were well reproduced in the two independent UTHealth and TCGA datasets. Our study demonstrated that an unsupervised approach can disentangle temporal and phenotypic heterogeneity and identify population subgroups with common patterns of disease progression. Based on the differences in these features across stages, physicians can better tailor treatment plans and medications to individual patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.