Abstract

Waste scrap tyre as microbial immobilization matrix enhanced degradation of phthalate esters (PAEs), di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and diethyl phthalate (DEP). The hybrid (physical adsorption and microbial immobilization) degradation process performance of scrap tyres was examined for the PAEs degradation. The scrap tyre was shown with competitive adsorption capacity toward PAEs, influenced by pH, temperature, dosage of adsorbent (scrap tyre), and concentration of PAE. The primary adsorption mechanism for tyres toward PAEs was considered hydrophobic. The immobilization of previously isolated Bacillus sp. MY156 on tyre surface significantly enhanced PAEs degradation as well as bacterial growth. The enzymatic activity results implied immobilization promoted dehydrogenase activity and decreased esterase activity. The cell surface response during PAEs degradation, in terms of morphological observation, FTIR and XRD analyses, and extracellular polymeric substance (EPS) release, was further assessed to better understand the interactions between microorganisms and tyre surface. Waste scrap tyres could be a promising potential candidate to be reused for sustainable environmental management, including contaminants removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call