Abstract

Reuse of treated wastewater for crop irrigation has been widely adopted to mitigate the effects of water scarcity on agricultural yields and to help preserving the integrity of aquatic ecosystems. This paper presents the outcomes of one-year monitoring of a full-scale agro-industrial wastewater treatment plant designed for water reuse, with a multistage tertiary treatment based on sand filtration, membrane ultrafiltration, storage and on-demand UV disinfection. We aimed to test flow cytometry as a monitoring tool to provide on-site indications on tertiary treatment performances and on the quality of treated wastewater along the treatment scheme. Membrane ultrafiltration retained prokaryotic cells and E. coli (>3 log). During storage of treated effluents, a significant decay of E. coli was observed together with the growth of prokaryotic and eukaryotic cells, and the UV disinfection was effective only against fecal indicators. The microbial quality of the treated effluent was comparable to the control groundwater locally used for irrigation. On-site rapid assessments by flow cytometry allowed unveiling crucial aspects affecting the microbiological quality of ultrafiltration permeate and treated effluent immediately after sampling, including plant operating performances and microbial removal patterns across the treatment train.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call