Abstract

Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool for ultrasensitive fingerprint recognition of molecules with considerable potential in wearable biochemical sensing. However, previous efforts to fabricate wearable SERS devices by directly treating fabrics with plasmonic nanoparticles have generated a nonuniform assembly of nanoparticles, weakly adsorbed on fabrics via van der Waals forces. Here, we report the creation of washing reusable SERS membranes and textiles via template-assisted self-assembly and micro/nanoimprinting approaches. Uniquely, we employ the capillary force driven self-assembly process to generate micropatch arrays of Au nanoparticle (NP) aggregates within hydrophobic microstructured templates, which are then robustly bonded onto semipermeable transparent membranes and stretchable textiles using the UV-resist based micro/nanoimprinting technique. A mild reactive ion etching (RIE) treatment of SERS membranes and textiles can physically expose the SERS hotspots of Au NP-aggregates embedded within the polymer UV resist for further improvement of their SERS performance. Also, we demonstrate that the semipermeable transparent SERS membranes can keep the moisture content of meat from evaporating to enable stable in situ SERS monitoring of biochemical environments at the fresh meat surface. By contrast, stretchable SERS textiles can allow the spreading, soaking, and evaporation of solution analyte samples on the fabric matrix for continuous enrichment of analyte molecules at the hotspots in biochemical SERS detection. Due to the mechanical robustness of the UV-resist immobilized Au NP aggregates, simple detergent-water washing with ultrasound sonication or mechanical stirring can noninvasively clean contaminated hot spots to reuse SERS textiles. Therefore, we envision that washing reusable SERS membranes and textiles by template-assisted self-assembly and micro/nanoimprinting fabrication are promising for wearable biochemical sensing applications, such as wound monitoring and body fluid monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.