Abstract
In this work, the gelation ability of a series of novel pyridine-based glucose tailored gelators (DPHAEN, DPHABN, and DPHAHN) with a flexible alkyl chain has been examined in binary solvent mixtures using a number of techniques, for example, UV spectroscopy, FT-IR spectroscopy, NMR spectroscopy, rheology measurement, SEM, XRD, and computational study. Proposed herein is an environment-friendly method to realize toxic dye separation and oil/water separation. It has been found that gels in a selective binary solvent mixture are efficient reusable absorbers of toxic dye molecules. A new gravitational force-driven, simple one-step, toxic dye removal and oil-water separation method is presented for sustainable filtration of waste water and simultaneous collection of oil. The gel column also showed high stability and reusability over repeated use and can be easily scaled for efficient clean-up of a large number of toxic dyes and oil spills present in water. Studies also exposed that the gel column can simultaneously separate dye molecules and mineral oils from water. This simple, green, and efficient method overcomes a nontrivial hurdle for environmentally safe separation of toxic dyes as well as oil/water mixtures and offers insights into the design of advanced materials for practical oil/water separation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have