Abstract

The quantified recirculation of a contaminant in a local domain is an essential property of the ventilation efficiency in a room. The returning probability of a contaminant (α) generated in a local domain and its net escape probability (NEP) are essential information for understanding the structure of the contaminant concentration distribution in a room and for controlling the indoor air quality. Here, we propose the fundamental definitions of α and NEP and discuss their potential relation with the net escape velocity (NEV) concept. NEP is defined at a local point and/or local domain as the probability that a contaminant is exhausted directly through an exhaust outlet and does not re-circulate to the target local point/domain again. In a computational fluid dynamics (CFD) simulation, the minimum local domain in a room corresponds to the control volume (C.V.) of discretization; hence, NEP in a C.V. is assumed as the probability in a point without volume. In this study, the calculation results of α, NEP, and NEV distributions in a simple two-dimensional model room and a three-dimensional room with push-pull type ventilation system are demonstrated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.