Abstract
Computational Fluid Dynamics (CFD) simulations are extensively used to model indoor environments, including airflow patterns, temperature distribution, and contaminant dispersion. These simulations provide valuable insights for improving indoor air quality, enhancing thermal comfort, optimizing energy efficiency, and informing design decisions. The recent global pandemic has emphasized the importance of understanding airflow patterns and particle dispersion in indoor spaces, highlighting the potential of CFD simulations to guide strategies for improving indoor air quality and public health. Consequently, there has been a significant increase in research focused on studying the transport and dispersion of pollutants in indoor environments using CFD techniques. These simulations are vital in advancing engineers' understanding of indoor environments; however, achieving accurate results requires careful method selection and proper implementation of each step. This paper aims to review the state-of-the-art CFD simulations of indoor environments, specifically focusing on strategies employed for three main simulation components: geometry and grid generation, ventilation strategies, and turbulence model selection. Researchers can select suitable techniques for their specific applications by comparing different indoor airflow simulation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.