Abstract

We study the return probability for the Anderson model on the random regular graph and give evidence of the existence of two distinct phases: a fully ergodic and nonergodic one. In the ergodic phase, the return probability decays polynomially with time with oscillations, being the attribute of the Wigner-Dyson-like behavior, while in the nonergodic phase the decay follows a stretched exponential decay.We give a phenomenological interpretation of the stretched exponential decay in terms of a classical random walker. Furthermore, comparing typical and mean values of the return probability, we show how to differentiate an ergodic phase from a nonergodic one. We benchmark this method first in two random matrix models, the power-law random banded matrices, and the Rosenzweig-Porter matrices, which host both phases. Second, we apply this method to the Anderson model on the random regular graph to give further evidence of the existence of the two phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.