Abstract
Canine bone marrow stromal cells (BMSCs), transduced ex vivo with retroviral vectors, expressed and secreted biologically active human and canine coagulation factor IX (hFIX and cFIX) in vitro, and on autologous reinfusion expressed hFIX into the circulation of normal (nonhemophiliac) dogs. Human FIX, when expressed in vitro by BMSCs of two dogs at 1.22 and 1.39 microg/10(6) cells/24 hr in medium supplemented with vitamin K, respectively, exhibited 28.1 and 27.3% normal biological activity as determined on the basis of a one-stage clotting assay. BMSCs of two additional dogs expressed 1.54 and 4.81 microg of cFIX/10(6) cells/24 hr in vitamin K-supplemented medium and the expressed cFIX possessed 58.4 and 32.9% normal activity, respectively. Between 2.33 and 3.35 x 10(8) transduced BMSCs, expressing 1.22 and 2.61 microg of hFIX/10(6) cells/24 hr or 3.24 and 7.82 microg of cFIX/10(6) cells/24 hr were reintroduced into the four donor dogs by intravenous infusion. Human FIX was detected in plasma for 7 or 12 days after BMSC reinfusion, with peak levels of 85.8 and 233.0 ng/ml observed at 2 days. Canine anti-hFIX antibodies, which were detected as early as 2-4 days after reinfusion of BMSCs expressing hFIX, may have masked potentially longer duration expression in vivo. Peak plasma levels of hFIX represented 2.1 and 5.8% normal human hFIX levels. When adjusted for percent normal one-stage clotting activity determined in vitro, these levels represented 0.6 and 1.6% normal human hFIX activity levels. Thus, we have demonstrated that retroviral vector-modified BMSCs can deliver human therapeutic levels of hFIX to the circulation of dogs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have