Abstract
Background- We recently reported the development of culture-derived (CD) platelets with the aim to express any protein of interest in these platelets. We now report a specific protocol of retroviral infection into the progenitor cells and subsequent selection, which allows to generate large amounts of highly homogenous transgene-expressing CD platelets and to study transgene function rapidly and reliably at large-scale ex vivo and in vivo settings. After retroviral infection and selection, the activation-dependent expression profile of surface markers, aggregation, and granule release were investigated. The function of transgene-expressing CD platelets, the precursor cells of which had been retrovirally infected, compared well to noninfected CD platelets or freshly isolated platelets. Hence, the retroviral infection protocol did not alter platelet physiology. In contrast, adenoviral infection of precursors to CD platelets resulted in marked functional alterations that obviated their use in analytic experiments. Additionally, sufficient amounts of selected CD platelets were generated to warrant intravenous injections into living mice. This approach permitted study of their adhesive profile at endothelial lesions and their effect on thrombus formation in vivo by intravital videofluorescence microscopy. The novel selection method allowed us to produce recombinant transgene-expressing platelets in sufficient amounts to study genetically modified platelets in vitro and in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.