Abstract

OBJECTIVE To evaluate and compare surface and cross-sectional structure as well as localized electrochemical corrosion and ion release for cast stainless steel (SS) tibia plateau leveling osteotomy (TPLO) plates retrieved from dogs with and without osteosarcoma (OSA) and to compare these findings with similar variables for forged SS TPLO plates retrieved from dogs. SAMPLE 47 TPLO plates explanted from 45 client-owned dogs (22 cast plates from dogs with OSA, 22 cast plates from dogs without OSA, and 3 forged plates from dogs without OSA). PROCEDURES Histologic evaluations of tissue samples collected from implant sites at the time of plate retrieval were performed to confirm implant site tumor status of each dog. Surfaces and metallographic cross sections of retrieved plates were examined, and the microcell technique was used to obtain local electrochemical corrosion and ion release measurements. RESULTS Findings indicated that all cast SS plates demonstrated high spatial variability of their electrochemical surface properties and inhomogeneous superficial and cross-sectional composition, compared with forged plates. Greater metal ion release was observed in cast plates than in forged plates and in cast plates from dogs with OSA than in cast or forged from dogs without OSA. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that accumulation of metal ions from implants could be a trigger for neoplastic transformation in neighboring cells. Metal ion release caused by corrosion of implants that do not comply with recommended standards of the American Society for Testing and Materials International or the International Organization for Standardization could potentially place patients at increased risk of tumor development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.