Abstract
ABSTRACTHaving a reliable ocean carbon flux (f(CO2)) retrieval model is essential to monitoring the global carbon cycle and to evaluating the climate change. Remote sensing techniques provide alternatives for f(CO2) retrieval with its advantages of wide area surveys and real-time monitoring. In the present study, a semianalytical f(CO2) estimation model was developed based on remote sensing data and in situ measurements in the Chinese Bohai Sea. The used model performed well (R2 = 0.84) in deriving f(CO2) based on the collected remotely sensed dataset, including sea surface temperature, estimated sea surface salinity, wind speed, Chl-a concentration. The results showed that the distribution of partial pressure of carbon dioxide (p(CO2)) and f(CO2) varied spatially and temporally during the 12 months in 2009. The spatial fluctuations of p(CO2) and f(CO2) in Bohai Sea in summer and autumn were more obvious than that in Spring and Winter. The highest values of p(CO2) and f(CO2) generally appeared in coastal regions. Moreover, the average f(CO2) value of the 12 months showed that the Bohai Sea performed as a weak carbon source in 2009. The results provided technical and data support for carbon management and climate negotiation in the Bohai Sea.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have