Abstract

The as-measured room-temperature normal-incidence transmittance–wavelength (T exp(λ) − λ) spectra of undoped amorphous selenium (a-Se) films, which were thermally deposited onto glass slides, exhibit well-resolved interference-fringe maxima and minima λ > λ c (≈630 nm), below which they fall rather sharply to zero transmittance. In the transparency and weak absorption region, the maxima transmittance is close to the substrate transmission, implying good uniformity of the a-Se films. The geometric thicknesses of the films and the spectral dependency of their optical constants n(λ) and κ(λ) were retrieved by analyzing the T exp(λ) − λ spectra by the PUMA method, based on the full T(λ)-formula for air-supported {uniform thin film/thick transparent substrate}-stacks, without the need for dispersion relations in prior and regardless of the number of interference fringes. The n(λ) − λ data of the transparency and weak absorption regions were found to fit the Wemple–DiDomenico and modified Sellmeier dispersion relations. The ω-dependency of the absorption coefficient α(ω) in the absorption-edge region has been analyzed in view of various interband transition models and was found to be nearly described by the linear power-law relation $$\alpha \hbar \omega \propto \hbar \omega - E_{\text{g}}$$ , with E g ≈ 2.2 eV over a broad spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.