Abstract

We associate to a localizable module a left retraction of algebras; it is a homological ring epimorphism that preserves singularity categories. We study the behavior of left retractions with respect to Gorenstein homological properties (for example, being Gorenstein algebras or CM-free algebras). We apply the results to Nakayama algebras. It turns out that for a connected Nakayama algebra A, there exists a connected self-injective Nakayama algebra A′ such that there is a sequence of left retractions linking A to A′; in particular, the singularity category of A is triangle equivalent to the stable category of A′. We classify connected Nakayama algebras with at most three simple modules according to Gorenstein homological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.