Abstract

ZnO is a wide-band-gap semiconductor material that is now being developed for many applications, including ultraviolet (UV) light-emitting diodes, UV photodetectors, transparent thin-film transistors, and gas sensors. It can be grown as boules, as thin films, or as nanostructures of many types and shapes. However, as with any useful semiconductor material, its electrical and optical properties are controlled by impurities and defects. We have reviewed the growth and analysis of carbon molecular crystals by the plasma enhanced chemical vapour deposition method. The three main synthesis methods of Carbon Nanocrystals (CNCs) are the arc discharge, the laser ablation and the chemical vapour deposition with a special regard to the later one. By two different methods ZnO layers were coated on the tubes. RF sputtering was one of the ways to directly deposit ZnO thin layer on the MWCNCs. On the other hand, we used thermally physical vapour deposition for making thin Zn film to oxidize it later. Scanning electron microscopy and also Raman spectroscopy measurements of the prepared samples confirmed the presence of ZnO nanolayers on the CNC bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.