Abstract
Fine dispersion of disordered phases is obtained in a Ni-Al-Co and Fe-Al-Co ternary system. A transmission electron microscopy investigation has been performed in the present work on the precipitation of supersaturated B2-ordered (Ni,Co)Al and α-Fe in B2-ordered FeAl(Co) with different stoichiometries. Precipitation behavior and hardening were investigated by measuring the hardness variation. The hardness of (Ni,Co)Al and B2-FeAl(Co) increased appreciably by the fine precipitation of (Ni,Co)2Al, α-Fe, and overage softening occurred after prolonged aging. In case of B2-ordered (Ni,Co)Al, the (Ni,Co)2Al phase had a hexagonal structure and took a rod-like shape with the long axis of the rod parallel to the 〈111〉 directions of the B2 matrix. By aging at temperatures below 873 K, a long period superlattice structure appeared in the hexagonal (Ni,Co)2Al phase. The orientation relationship between the (Ni,Co)2Al precipitates and the B2-(Ni,Co)Al matrix was (0001)p//(111)B2 and \([\bar 12\bar 10]_p //[\bar 110]_{B2}\), where the suffix p and B2 denote the (Ni,Co)2Al precipitate and the B2-(Ni,Co)Al matrix, respectively. (Ni,Co)Al hardened appreciably by the fine precipitation of the (Ni,Co)2Al phase. On the other hand, in case of B2-FeAl(Co), the disordered α-Fe phase was present as a precipitate in a B2-FeAl(Co) matrix and had a cubic-cubic orientation with the matrix. At the early aging periods, prismatic dislocation loops formed in the B2-FeAl(Co) matrix. B2-FeAl(Co) matrix was typically hardened by the precipitation of α-Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.