Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by the SFTS virus (SFTSV) and with a high fatality rate. Thrombocytopenia is a major clinical manifestation observed in SFTS patients, but the underlying mechanism remains largely unclear. Here, we explored the effects of SFTSV infection on platelet function in vivo in severely infected SFTSV IFNar−/− mice and on mouse and human platelet function in vitro. Results showed that SFTSV-induced platelet clearance acceleration may be the main reason for thrombocytopenia. SFTSV-potentiated platelet activation and apoptosis were also observed in infected mice. Further investigation showed that SFTSV infection induced platelet reactive oxygen species (ROS) production and mitochondrial dysfunction. In vitro experiments revealed that administration of SFTSV or SFTSV glycoprotein (Gn) increased activation, apoptosis, ROS production, and mitochondrial dysfunction in separated mouse platelets, which could be effectively ameliorated by the application of antioxidants (NAC (N-acetyl-l-cysteine), SKQ1 (10-(6′-plastoquinonyl) decyltriphenylphosphonium) and resveratrol). In vivo experiments showed that the antioxidants partially rescued SFTSV infection-induced thrombocytopenia by improving excessive ROS production and mitochondrial dysfunction and down-regulating platelet apoptosis and activation. Furthermore, while SFTSV and Gn directly potentiated human platelet activation, it was completely abolished by antioxidants. This study revealed that SFTSV and Gn can directly trigger platelet activation and apoptosis in an ROS-MAPK-dependent manner, which may contribute to thrombocytopenia and hemorrhage during infection, but can be abolished by antioxidants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.