Abstract
In this study, asymmetric laminar flow and heat transfer of nanofluid between contracting rotating disks are investigated. The fluids in the channel are water containing different nanoparticles Cu, Ag and Al2O3. The effective thermal conductivity and viscosity of nanofluid are calculated by the Chon and Brinkman models, respectively. The governing equations are solved via the fourth-order Runge–Kutta–Fehlberg method (NUM) and least square method (LSM). The effects of the nanoparticle volume fraction, rotational Reynolds number, injection Reynolds number, expansion ratio and s on flow and heat transfer are considered. The results show that as s increases temperature profile increases and the point of maximum radial velocity is shifted towards the middle of the two disks. Also the results indicated that temperature profile becomes more flat near the middle of two disks with the increase of injection but opposite trend is observed with increase of expansion ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.