Abstract

In this study, comprehensive study of laminar flow and heat transfer of pseudo-plastic non-Newtonian nanofluid (Al2O3+CMC) within the porous circular concentric region is presented. The effect of volume fraction of nanoparticles, Reynolds number, Darcy number, thickness ratio is studied. Simulations for different Reynolds numbers and Darcy numbers in the range of 100≤Re≤300and 10−4≤Da≤10−2 are done. The results show that the effect of the porous layer on increasing the convective heat transfer coefficient is larger than the Reynolds number, since, at a given volume fraction, the porous medium plays a greater role in increasing the heat transfer compared to the increasing Reynolds number. Also, at a given volume fraction and for a fixed porosity, decreases in the permeability leads to increased Darcy velocity and, consequently, velocity profile. As the thickness of the porous layer increases at fixed values of permeability and porosity, the velocity of the nanofluid is also increased in a constant Reynolds number, by increasing the thickness of the porous media, heat transfer coefficient increases. In addition, at a specified thickness and constant Reynolds number, by increasing the Darcy number, the heat transfer coefficient and the Nusselt number increases. Moreover, as the thickness of the porous layer increases at fixed values of permeability and porosity, the velocity of the nanofluid is also increased; this consequently maximizes the pressure drop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.