Abstract

Abstract In order to improve the interlaminar shear strength (ILSS) of glass fiber reinforced polymers (GFRPs), the fiber/matrix interface has been enriched via chemical robust bonds between glass fiber surface and carbon nanotubes (CNTs). Electrophoretic deposition (EPD) utilized to form a homogenous layer of CNTs on the chemically activated glass fibers. Initially, experimental studies on the electric field, suspension concentration and EPD duration conducted to find optimum EPD parameters for deposition. Then, various GFRP specimens manufactured to evaluate the effect of fiber's surface modification on ILSS of nanocomposites. Regarding most stable process and best quality of CNT deposition, the current density of EPD recorded between 0.5 and 1 mA/cm2. Field strength enhanced deposition mass around 8.5 times, but the concentration effect was around 5.5. Current density diagram was steady in stable processes and the first 3 min of EPD known as effective deposition time. The straightening influence of CNT deposition in composite's interface observed more effective than other treatment techniques. CNT deposition on surface of glass fibers improved the ILSS of GFRPs by 18.2% & 41.5% compared with simple and de-sized control samples, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.