Abstract
The efficient bioconversion of the lignocellulosic agro-waste has immense importance in biorefinery processing in extracting the cellulose and saccharide fractions. To achieve this, a series of chemical pretreatments is employed, thus concerning environmental threats limit its use. Therefore, an ionic liquid is employed for pretreatment before sustainable extractions owing to its safe manipulation, recycling, and reusability. Specifically, microwave-assisted ionic liquid (MWAIL) pretreatment has significant importance in extracting high cellulose yield at less thermal power consumption. In this study, the leftover stalks of Hamelia patens were subjected to MWAIL pretreatment at 60, 70, 80, and 90 °C to extract microcrystalline cellulose (MCC). Subsequently, the MCC was fabricated into cellulose nanocrystals (CNC) through hydrolytic treatment using acidic and ionic liquids and denoted as CNC-AH and CNC-ILH. Thus obtained CNC was characterized by FTIR, FESEM, XRD, and TGA to investigate the influence of solvent on its morphology, crystallinity, and thermal stability of CNC. The results support that the CNC-ILH has comparatively more thermal and dispersal stability with a reduced crystallinity index than CNC-AH. The surprising results of CNC-ILH signify its utilization in diverse applications in the food and industrial sectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.