Abstract

In this study, Artemisia annua stem waste was identified, for the first time, as a potential natural source to produce cellulose microfibers (CMF), as well as cellulose nanocrystals (CNC) with unique functionalities by using various organic acids. The CMF extraction was carried out using alkali and bleaching treatments, while the CNC were isolated under acid hydrolysis by using sulfuric acid (S-CNC), phosphoric acid (P-CNC), and hydrochloric acid / citric acid mixture (C-CNC). The CMF and CNC physicochemical, structural, morphological, dimensional, and thermal properties were characterized. CMF with a yield of 53%, diameter of 5 to 30 µm and crystallinity of 57% were successfully obtained. In contrast, CNC showed a rod-like shape with an aspect ratio of 53, 95, and 64 and a crystallinity index of 84, 79, and 72% for S-CNC, P-CNC, and C-CNC, respectively. Results suggested that the type of acid significantly influenced the structure, morphology, and thermal stability of CNCs. Based on these results, Artemisia annua stem waste is a great candidate source for cellulose derivatives with excellent characteristics.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.