Abstract

The complexity, scale and dynamic of data source in the human-centric computing bring great challenges to maintainers. It is problem to be solved that how to reduce manual intervention in large scale human-centric computing, such as cloud computing resource management so that system can automatically manage according to configuration strategies. To address the problem, a resource management framework based on resource prediction and multi-objective optimization genetic algorithm resource allocation (RPMGA-RMF) was proposed. It searches for optimal load cluster as training sample based on load similarity. The neural network (NN) algorithm was used to predict resource load. Meanwhile, the model also built virtual machine migration request in accordance with obtained predicted load value. The multi-objective genetic algorithm (GA) based on hybrid group encoding algorithm was introduced for virtual machine (VM) resource management, so as to provide optimal VM migration strategy, thus achieving adaptive optimization configuration management of resource. Experimental resource based on CloudSim platform shows that the RPMGA-RMF can decrease VM migration times while reduce physical node simultaneously. The system energy consumption can be reduced and load balancing can be achieved either.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.