Abstract

Live virtual machine (VM) migration is a technique for transferring an active VM from one physical host to another without disrupting the VM. This technique has been proposed to reduce the downtime for migrated overload VMs. As VMs migration takes much more times and cost in comparison with tasks migration, this study develops a novel approach to confront with the problem of overload VM and achieving system load balancing, by assigning the arrival task to another similar VM in a cloud environment. In addition, we propose a multi-objective optimization model to migrate these tasks to a new VM host applying multi-objective genetic algorithm (MOGA). In the proposed approach, there is no need to pause VM during migration time. In addition, as contrast to tasks migration, VM live migration takes longer to complete and needs more idle capacity in host physical machine (PM), the proposed approach will significantly reduce time, downtime memory, and cost consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call