Abstract
In the present work, compressive strength of ash-based geopolymers with different mixtures of rice husk ash, fly ash, nano alumina, and nano silica has been predicted by artificial neural networks. The neural network models were constructed by 12 input parameters including the water curing time, the rice husk ash content, the fly ash content, the water glass content, NaOH content, the water content, the aggregate content, SiO2 nanoparticles content, Al2O3 nanoparticles content, oven curing temperature, oven curing time, and test trial number. The value for the output layer was the compressive strength. According to the input parameters in feed-forward back-propagation algorithm, the constructed networks were trained, validated, and tested. The results indicate that artificial neural networks model is a powerful tool for predicting the compressive strength of the geopolymers in the considered range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.