Abstract
BackgroundHepatitis B virus (HBV) infection is acknowledged as the main cause of hepatocellular carcinoma (HCC). Moreover, previous studies have revealed that microRNAs (miRNAs) widely participate in regulation of various cellular processes, such as viral replication. Hence, the purpose of this study was to investigate the roles of aquaporin 5 (AQP5) and miR-325-3p in the proliferation and apoptosis of HBV-related HCC cells.MethodsAQP5 and miR-325-3p expression in both normal and HBV-HCC tissues or cells (both Huh7–1.3 and HepG2.2.15) was detected using qRT-PCR. AQP5 expression was knocked down in HBV-related Huh7–1.3 and HepG2.2.15 cells using small interfering RNA (siRNA) technology. Down-regulation was confirmed using real-time PCR and Western blot analysis. Effects of AQP5 down-regulation on the proliferation and apoptosis were assessed. Dual luciferase reporter gene assay, Western blot and qRT-PCR were employed to evaluate the effect of miR-325-3p on the luciferase activity and expression of AQP5. Moreover, miR-325-3p mimic-induced changes in cellular proliferation and apoptosis were detected through CCK-8 assay, BrdU assay, flow cytometry analysis and ELISA.ResultsIn this study, the expression of AQP5 was up-regulated in human HBV-HCC tissue, Huh7–1.3 and HepG2.2.15 cells. Knockdown of AQP5 significantly inhibited the proliferation and promoted apoptosis of HBV-HCC cells. Next, miR-325-3p was obviously down-regulated in HBV-HCC. In concordance with this, MiR-325-3p directly targeted AQP5, and reduced both mRNA and protein levels of AQP5, which promoted cell proliferation and suppressed cell apoptosis in HCC cells. Overexpression of miR-325-3p dramatically inhibited cell proliferation and induced cell apoptosis.ConclusionsOur findings clearly demonstrated that introduction of miR-325-3p inhibited proliferation and induced apoptosis of Huh7–1.3 and HepG2.2.15 cells by directly decreasing AQP5 expression, and that silencing AQP5 expression was essential for the pro-apoptotic effect of miR-325-3p overexpression on Huh7–1.3 and HepG2.2.15 cells. It is beneficial to gain insight into the mechanism of HBV infection and pathophysiology of HBV-related HCC.
Highlights
Introduction ofaquaporin 5 (AQP5) reversed the effects of miR-325-3p mimic on proliferation and apoptosis of Huh7–1.3 and HepG2.2.15 cells To determine whether miR-325-3p overexpression protected hepatocellular carcinoma (HCC) cells from Hepatitis B virus (HBV)-induced apoptosis in an AQP5-dependent manner, we cotransfected Huh7–1.3 and HepG2.2.15 cells with miR-325-3p mimic and pcDNA-AQP5
Expression of AQP5 and its effects on cell proliferation and apoptosis of HBV-HCC cells It has been reported that AQPs are closely associated with cancers
The results showed that the mRNA level of AQP5 was the highest in HBV-HCC tissues among these five AQP genes compared with the adjacent tissues (Fig. 1a)
Summary
Introduction ofAQP5 reversed the effects of miR-325-3p mimic on proliferation and apoptosis of Huh7–1.3 and HepG2.2.15 cells To determine whether miR-325-3p overexpression protected HCC cells from HBV-induced apoptosis in an AQP5-dependent manner, we cotransfected Huh7–1.3 and HepG2.2.15 cells with miR-325-3p mimic and pcDNA-AQP5. We found that the expression of AQP5 was dramatically increased after transfection with miR-325-3p mimic and pcDNA-AQP5 compared with miR-325-3p mimic and pcDNA3.1 in Huh7– 1.3 and HepG2.2.15 cells (Fig. 5a, b). Analysis by CCK-8 and BrdU assays indicated that up-regulation of AQP5 in cells transfected with the miR-325-3p mimic increased the proliferation of Huh7–1.3 and HepG2.2.15 cells transfected with miR-325-3p mimic only (Fig. 5c, d). Our results showed that overexpression of AQP5 could reverse the pro-apoptotic effect of miR-325-3p mimic on Huh7–1.3 and HepG2.2.15. The purpose of this study was to investigate the roles of aquaporin 5 (AQP5) and miR-325-3p in the proliferation and apoptosis of HBVrelated HCC cells. MiRNAs are considered as important regulators in virus infection
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.