Abstract
Therapeutic issues are commonly found in every single person. Tumor is a standout among the most unsafe sicknesses a human can ever had. It is exceptionally hard to distinguish it in its beginning times as its side effects seem just in the progressed stages. Subsequently, the early forecast of lung growth is compulsory for the analysis procedure, and it gives the higher possibilities for fruitful treatment. It is the most difficult approach to upgrade a patient’s possibility for survival. Henceforth, a higher-order neural network system called recurrent neural network with Levenberg–Marquardt model with the help of glowworm swarm optimization algorithm is proposed for managing multimodal disease information. The execution of the proposed strategies is tried with information and the benchmark dataset, and the outcomes demonstrate that the higher-order recurrent neural systems with glowworm swarm optimization give better accuracy of 98% in comparison with customary optimized neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.