Abstract
Glowworm Swarm Optimization (GSO) algorithm is a derivative-free, meta-heuristic algorithm and mimicking the glow behavior of glowworms which can efficiently capture all the maximum multimodal function. Nevertheless, there are several weaknesses to locate the global optimum solution for instance low calculation accuracy, simply falling into the local optimum, convergence rate of success and slow speed to converge. This paper reviews the exposition of a new method of swarm intelligence in solving optimization problems using GSO. Recently the GSO algorithm was used simultaneously to find solutions of multimodal function optimization problem in various fields in today industry such as science, engineering, network and robotic. From the paper review, we could conclude that the basic GSO algorithm, GSO with modification or improvement and GSO with hybridization are considered by previous researchers in order to solve the optimization problem. However, based on the literature review, many researchers applied basic GSO algorithm in their research rather than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.