Abstract

Xist requires Repeat-A, a protein-binding module in its first two kilobases (2kb), to repress transcription. We report that when expressed as a standalone transcript in mouse embryonic stem cells (ESCs), the first 2kb of Xist (Xist-2kb) does not induce transcriptional silencing. Instead, Xist-2kb sequesters RNA produced from adjacent genes on chromatin. Sequestration does not spread beyond adjacent genes, requires the same sequence elements in Repeat-A that full-length Xist requires to repress transcription and can be induced by lncRNAs with similar sequence composition to Xist-2kb. We did not detect sequestration by full-length Xist, but we did detect it by mutant forms of Xist with attenuated transcriptional silencing capability. Xist-2kb associated with SPEN, a Repeat-A binding protein required for Xist-induced transcriptional silencing, but SPEN was not necessary for sequestration. Thus, when expressed in mouse ESCs, a 5′ fragment of Xist that contains Repeat-A sequesters RNA from adjacent genes on chromatin and associates with the silencing factor SPEN, but it does not induce transcriptional silencing. Instead, Xist-induced transcriptional silencing requires synergy between Repeat-A and additional sequence elements in Xist. We propose that sequestration is mechanistically related to the Repeat-A dependent stabilization and tethering of Xist near actively transcribed regions of chromatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.