Abstract

BackgroundImbalances in X-linked gene dosage between the sexes are resolved by transcriptionally silencing one of two X-chromosomes in female cells of the early mammalian embryo. X-inactivation is triggered by expression of the non-coding Xist gene. In turn, Xist is dually regulated by the antisense Tsix RNA and by the Oct4 pluripotency factor. Although there is general agreement that Tsix is an inhibitor of Xist, some laboratories have observed ectopic Xist induction in differentiating male ES cells when Tsix is mutated, whereas we have not observed significant changes in Xist. These observational differences have led to fundamentally diverse models of X-chromosome counting. Here, we investigate if different methods of cell differentiation and use of all -trans retinoic acid (RA) could be causative factors and how they might impact Xist expression.ResultsWe compared suspension and cell-adhesion cultures in the presence or absence of RA and find that RA significantly impacts Xist expression in Tsix-mutant male cells. Whereas the standard embryoid body method infrequently leads to ectopic Xist expression, adding RA generates a significant number of Xist-positive male cells. However, while normal Xist clouds in wild-type female cells are robust and well-circumscribed, those found in the RA-treated mutant males are loosely dispersed. Furthermore, ectopic Xist expression does not generally lead to complete gene silencing. We attribute the effect of RA on Xist to RA's repressive influence on Oct4, a pluripotency factor recently shown to regulate Tsix and Xist. RA-treated ES cells exhibit accelerated decreases in Oct4 RNA levels and also display accelerated loss of binding to Xist intron 1. When Tsix is deficient, the faster kinetics of Oct4 loss tip the equilibrium towards Xist expression. However, the aberrant Xist clusters are unlikely to explain elevated cell death, as X-linked silencing does not necessarily correlate with the qualitatively aberrant Xist clusters.ConclusionsWe conclude that RA treatment leads to premature downregulation of Oct4 and partial derepression of Xist irrespective of X-chromosome counting. RA-induced Xist clusters in male cells do not result in global or stable silencing, and excess cell death is not observed. These data and RA's known pleiotropic effects on ES transcription networks suggest that RA differentation bypasses normal X-inactivation controls and should be used judiciously. We propose that the likelihood of Xist expression is determined by a balance of multiple Xist activators and repressors, and that levels of Oct4 and Tsix are crucial toward achieving this balance.

Highlights

  • Imbalances in X-linked gene dosage between the sexes are resolved by transcriptionally silencing one of two X-chromosomes in female cells of the early mammalian embryo

  • Ectopic Xist upregulation in TsixΔCpG male embryonic stem (ES) cells differentiated in the presence of retinoic acid We differentiated wild-type and TsixΔCpG male and female ES cells using variations of four published in vitro differentiation techniques: (1) embryoid body formation (EB method), whereby ES cell clusters are cultured in suspension for 4 days, in the absence of LIF, and plated onto a solid matrix to form embryoid body method (EB) outgrowths; (2) EB method in the presence of 100 nM of all-trans retinoic acid (EB+RA method); (3) adherent cultures whereby ES cells are plated at low-density on gelatinized tissue culture plates without feeders and LIF (TC method); and (4) the low-density cell adhesion (TC) method in the presence of 100 nM all-trans retinoic acid (TC+RA method)

  • By Xist RNA FISH, we detected a slight increase in the percentage of cells with Xist clouds using the embryoid body (EB) versus the low-density cell adhesion (TC) method (Fig. 2A, 32% in X/X EB compared to 18% in X/X TC at day 6)

Read more

Summary

Introduction

Imbalances in X-linked gene dosage between the sexes are resolved by transcriptionally silencing one of two X-chromosomes in female cells of the early mammalian embryo. There is general agreement that Tsix is an inhibitor of Xist, some laboratories have observed ectopic Xist induction in differentiating male ES cells when Tsix is mutated, whereas we have not observed significant changes in Xist. These observational differences have led to fundamentally diverse models of X-chromosome counting. Sex dosage compensation ensures equal X-linked gene expression between XX and XY individuals In mammals, this balance is achieved by transcriptionally silencing an entire X-chromosome in females through a very early in embryonic development, cell culture models have been developed to facilitate analysis. Various knockouts of Tsix (and its upstream enhancer Xite [18]) have led to nonrandom XCI as well as effects on counting and pairing [13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.