Abstract

To reveal alterations in retinal structure, vessels, and function, and their association with cognitive function and neuroimaging in white matter hyperintensities (WMH). This study enlisted WMH and age-matched healthy controls (HC). All participants underwent six different tests: magnetic resonance imaging (MRI) of the brain, the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), fundus photography, optical coherence tomography (OCT), and visual field testing. Visual field can reflect the function of optic nerve and retina. The peripapillary retinal nerve fiber layer (p-RNFL) was analyzed using OCT. Image J software was employed to measure retinal vascular caliber in fundus photographs and to compute the central retinal artery equivalent (CRAE), central retinal venous equivalent (CRVE) and arteriole-to-venule ratio (AVR). A total of 90 WMH patients and 93 HC participants. In comparison with the HC, the WMH group exhibited reduced cognitive function scores (MoCA: P < 0.001; MMSE: P < 0.001), narrower retinal arteries (P < 0.001), smaller AVR (P < 0.001) and thinner p-RNFL thickness (total: P = 0.026; temporal: P = 0.006). About visual field, both univariate and multivariate analysis showed that mean sensitivity decreased, and mean defect increased in WMH group (P < 0.05). Additionally, correlation analysis indicated a positive correlation between CRAE and AVR with MMSE and MoCA score (r = 0.424-0.57, P < 0.001) and a negative correlation with Fazekas score (CRAE: r = -0.515, P < 0.001; AVR: r = -0.554, P < 0.001), and p-RNFL was negatively correlated with Fazekas score (total p-RNFL: r = -0.192, P = 0.009; temporal p-RNFL: r = -0.217, P = 0.003). Notably, no significant correlation was found between cognitive function and p-RNFL. WMH group exhibit narrower retinal arteries, smaller arteriole-to-venule ratio, damaged p-RNFL and visual function. These alterations in retinal vessels are associate with both neuroimaging and cognitive function. Our results suggest that retinal imaging could serve as a valuable instrument for evaluating WMH and provides some new approaches to study the characteristic markers of WMH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.